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Abstract—A higher order two-dimensional theory for thick cylindrical shells is presented in this
paper. The shell equations given here do not only incorporate the effect of transverse shear defor-
mations but also account for the initial curvature as well as the radial stress. The proposed
theory presents a very good approximation for the shell constitutive equations and the nonlinear
distributions of the in-plane stresses across the thickness of the shell. The latter is very important
in the thick shells analysis. The formulation is based on: (1) assumed out-of-plane stress components
which satisfy the given traction boundary conditions; (2) three-dimensional elasticity equations
with an integral form of the equilibrium equations: and (3) stress resultants and stress couples
acting on the middle surface of the shell. average displacements along the normal at a point on the
middle surface, and average rotations of the normal.

The proposed shell equations can be conveniently used in the finite clement analysis. An
application of this theory to the finite element analysis of circular arches is given in this paper. A
more convenient form of the proposed shell equations for finite element analysis and its application
to cylindrical shells will be presented in a follow-up paper.

INTRODUCTION

Although the complete two-dimensional lincar theory of thin shells was developed by Love
100 years ago, numcrous contributions since then have been made to this subject. This is
primarily because any two-dimensional theory of shells is an approximation to the real
problem. Resecarchers have been sceking better approximations for the exact three-dimen-
sional clasticity solutions of shells. In the lust three decades, the developed refined two-
dimensional linear theories of thin shells include the important contributions of Sanders
(1959), Koiter (1960), Flugge (1960) and Niordson (1978). In these refined theories, the
initial curvature effect is taken into consideration in the formulation of the shell equations.
Nevertheless, the deformation is based on the Love-Kirchhoff assumption, and the radial
stress cffect is neglected. These refined theorics provide very good results for the analysis
of thin shells. The theory of Sanders-Koiter has been widely used in the finite element
analysis of shells (Ashwell and Gallagher, 1976).

However, it is shown (see Niordson, 1971) that Love’s strain energy cxpression has
inherent errors of relative order [/ R+ (h/L)?] where h is the thickness of the shell, R is the
magnitude of the smallest principal radius of curvature, and L is a characteristic wave
length of the deformation pattern of the middle surface. Consequently, when the refined
theories of thin shells are applied to thick shells, that is & R is not small compared to unity,
the error could be quite large as expected. Relative to the theory of thin shells, the theory
of thick shells has received limited attention by the rescarchers up to now. With the increase
of the utilization of thick shells to various engineering applications such as cooling towers,
arch dams, pressure vessels, etc. it is imperative to develop a simple and accurate theory
for thick shells.

Thick shells have a number of distinctly different features from thin shells. One of
these features is that in thick shells the transverse shear deformation may no longer be
neglected. In a number of particular cases of loadings the radial stress distribution of thick
shells is very important and needs to be incorporated in the shell analysis. A third important
distinction between thick and thin shell analyses is that in thick shell analysis the initial
curvatures do not only contribute to the stress resultants and stress couples. but also result
in nonlinear distributions of the in-plane stresses along the thickness of the shell.

It is not difficult to incorporate transverse shear deformations in shells. This can be
accomplished following the work of Reissner (1945) for the plate theory. Nevertheless, it
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is not an easy task to incorporate radial stresses in thin shell theory and to obtain nonlinear
stress distributions through the shell thickness in order to describe the behavior of thick
shells. The attention in the previously developed shell theories was focused on the two-
dimensional shell equations together with maintaining a linear stress distribution through
the shell thickness (see Flugge. 1960; Niordson, 1985). It appears that refinement of the
stress distribution in the thick shells has hardly been ignored. The theory of thin shells may
provide a good estimate of the strain energy for some problems in thick shells. Nevertheless,
it cannot provide an accurate distribution for the stresses through the thickness (Gupta
and Khatua. 1978). This accuracy s imperative from an engineering point of view.
The formulation procedure for the proposed shell theory is based on the following :

(1) assumed out-of-plane stress components that satisfy the given traction boundary
conditions ;

(2) three-dimensional elasticity equations with an integral form of the equilibrium
equations:

(3) stress resultants and stress couples acting on the middle surface of the shell together
with average displacements along a normal of the middle surface of the shell and the average
rotations of the normal (Voyiadjis and Baluch, 1981).

Although the proposed shell theory in this work is limited to thick cylindrical shells, the
methodology can be extended to general shells by considering the general geometry of the
shell.

[t is well established that curved beams exhibit a nonlinear circumferential stress
distribution through the thickness. In the proposcd theory of shells, all the in-plane stresses
exhibit a nonliner distribution through the thickness. This is primarily due to the incor-
poration of the initial curvature effect in the theoretical formulation of the proposed shell
theory. The nonlincar stress expressions given here are compared for specific examples to
those obtained through the three-dimensional theory of elasticity.

Duc to the incorporation of the initial curvature of the shell in the proposed theory,
we note that neither the stress resultant tensor nor the stress couple tensor is symmctric.,
The resulting constitutive equations of shells reduce to those given by Flugge (1960) when
the shear deformation and radial effects are neglected. In this case the average displacements
are replaced by the middle surface displacements. However, the resulting equations are
slightly different from those given by Sanders (1959), Koiter (1960) and Niordson (1978).
This is primarily because the so-called effective stress tensor and effective moment tensor
are used in the derivation of the constitutive equations instead of the usual stress tensors
(Niordson, 1971).

The proposed shell equations can be conveniently used in the finite element analysts.
An application of this theory to the finite element analysis of circular arches is given in this
paper. Numerical results are obtained and compared with the elasticity solution.

THEORETICAL FORMULATION OF THE REFINED THEORY OF THICK CYLINDRICAL SHELLS

Displacement field

The proposed theory for thick circular cylindrical shells incorporates the effects of the
initial curvature and radial stress in addition to the effect of transverse shear deformations.
The following kinemuatic field for u, ¢ and w displacements along the x, ¢ and = direction
is defined [sce eqns (7) -(17)], respectively, for isotropic lincar clastic materials:
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M=M+M, (4

¢ = <5’):-| )
I
C; = —(":l)!. (6)
r,

In eqns (1)-(3), uy(x. @), volx, ¢) and wy(x, ¢) are the displacements in the x, ¢ and
= directions, respectively, of the mid-surface - = 0. The loads p,; and p,, are distributed
along the x direction on the inner and outer surfaces, respectively, and similarly for the
loads p,, and p,, along the ¢ direction. In the above expressions, £ and v are the Young's
modulus and Poisson’s ratio, respectively, h is the thickness of the shell, and p,(x, ¢) and
po(x, @) are the radial loads exerted on the shell surfaces = = —A/2and z = A/2. respectively.
The positive sign convention for these loads is shown in Fig. 1. @, and Q, are the transverse
shears, and M, and M, are the moment stress resultants on the planes of x = constant and
¢ = constant, respectively.

The addition of the transverse normal strain effect has resulted in a transverse dis-
placement w whose distribution through the thickness is explicitly obtained on physical
grounds as a nonlinear function in =. The detailed derivation of the displacement field is
outlined below.

The following out-of-plane stress components are assumed :

and
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Fig. 1. Cylindrical shell element.
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Expression (7) depicts the radial stress distribution as obtained from the clasticity solution
for thick cylinders subjected to constant radial loads at both surfaces = = A2 and 2 = —4/2.
The normal stress o, is ignored in the case of analysis of thin shells. Equation (9) expresses
the transverse shear stress as obtained from rectangular cross-sections. In the case of eqn
(8), the transverse shear on the surface v = constant is modified through the term (1 —z/R)
due to the fact that the cross-section is not rectangular in this case but exhibits a curvature.
Equations (7)-(9) satisfy the following boundary conditions

o.=p, atz=Hh2 {10a)
g.= —p, atz= —hj2 (i0b)
Top = Ppo atz = h/2 (10¢)
T, = —py atz= —h/2 (10d)
Te: = Puo atz=n2 {10¢)
T, = —py atz= —h/2, (10f)

The assumed stress field satisfies the weak form of the equilibrium equation given by
the following integral expression

B (ot lry.  do.  6.—a,
Jz (}5}"’ trpta T )0 (1

Using Hooke's law for a linear elastic material, we obtain the transverse normal strain
€. in terms of the stresses:

|
£ = E{G:-‘.(ar+ad’)}' (12)

The sum (4, +¢,) is assumed to be given by the following expression :
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Reissner (1975) considered a plate with no load and made use of expression (13) to modify
the expression for the transverse displacetnefit w. Substituting expressions (7) and (13) into
eqn (12). we obtain

ow  1T1=(ra/m)? - : 12
w 1 (r_/r) pl+ l (rl/r) po—_‘;(fwx-*-‘»lé): .
C) (4] h

é- E

(14)

Integrating eqn (14) with respect to : yields the following expression for the displace-
ment w:

w(x, ¢,2) = wolx.d)+ %{J(l — (rz/rv) ot 1— (ri/r-)p‘,)ds—véiM}
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In the classical theory of bending of thin shells, the term =/ R and all its higher order terms
are neglected. In the present formulation, the term /R is retained but all its higher order
terms (z/R)*, (z/R)*, etc. are neglected. The resulting expression for w(x, @, =) is now given
by eqn (3).

In order to obtain consistent assumptions for the displacements u(x, ¢, z) and
v(x, ¢, 2), the following strain-displacement relations are used :

u  Ow Te-

B e =Y = ¢ l6

oz + ox Ve G (16)
o v + ow Ty: (17
o2 r TR T T G

Substituting for the appropriate shearing stress from expressions (8) and (9) into eqns (16)
and (17) and integrating both expressions with respect to =z, we obtain the originally
postulated expressions (1) and (2) for the « and v displacements, respectively.

[n the shell theory that follows the distributed loads p.i, p.,, pgi and py, are omitted
for simplicity and conciseness. The reader may choose to include them by following the
procedure outlined below.

Stress components 6, 64, 7.,
In order to obtain the o, g, 7, stresses, use is made of the following three stress—
strain relations

) v
G, = I—Vz [84‘+l'b,’]+ l_va= (18)
- £ + ]+ v 19
Gy = l—vzle" Ve, -I_va: (19)
twb = G?t¢ (20)

together with the following strain-displacement relations

n
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Substituting for the displacements « and ¢ from eqns (1) and (2), respectively, into
expressions (21), (22) and (23) and substituting the resulting strain expressions into egns
(18). (19) and (20). we obtain the following expressions for the stresses:
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and
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Stress couples and stress resultants on the middle surface
Making use of the definitions for the stress couples:

hed -
N - = - b}
M, .[n 2 m,(l + R) d: (27

3
M, = —‘( 6,2 dz (28)
A2
h, 3 -
M, = - j‘ s rw:(l + R) dz {29)
2
M, = -J Tp,2 dz, ‘ (30)
b2

we now substitute the expressions for the stresses from eqas (24), (23) and (26) into the
respective relations for the stress couples to obtain:
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In egns (31) and (33), the following terms at the end of those expressions
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and

respectively, may be ignored. These terms are of negligible magnitude when compared to
the remaining terms of these expressions. This can also be shown in the case of the average
transverse displacement v discussed later whereby these terms are of negligible magnitude
when compared to the remaining terms in that expression. In the remaining formulation
similar terms will be ignored for the sume reasons.

Substituting for the stresses a,, o, and t,, from eqns (24)-(26), respectively, into the
following definitions for the stress resultants

N, = Jh a‘(l + %)d: (35)

2
N, = J g, 4d: 36)

h 2 -
Ny, = j T (1 + k)d: 37

2
N, = J Ty dz. (38)
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we obtain the following expressions for the stress resultants:

Eh fou, = wy fro M Wi (p, 2 Po -
Ne=iow {c’x+‘ Y R2¢ " 10RER T 20ER\;, T T

L 5
- oo (e vage) B B ]

Dlciwy 3w &M - k& (pir2+p¢,r2)]
R| ot T iohE & T 0ER & ¢, ¢ ¢, !

v [ - }+—(R*-r; ] (39)

+ iI—vR°

Eh | ov, Qg I’E ( ¢ N[ .
No=15 {E'E(B*""éﬁé“m rapt T a) L B
m ! v h (pi 2, Po )

iR __ e — A LI

SR }+R[““ w0&r 't ER e,

ri+
s

D a* 1 3w o(p ., pe ,)
s BINT =3 o — A ~—ryd —ry
i {(R'x?:/)' + R') [“ Yo Mt 0ER (c, ah

{L+v}h Q \‘%Q vk P
THo(t = v2) (qu:,+ )}"‘“ =y R (: (R ~ri)+ ‘*(R )} (40)

[‘11 {—v (’,"“ (‘11,0 h'.‘ (‘)I p| . ,
Moo = b (”2 ) {RF)({) * v T 1RER? Rix 0 E:(R —re)

p“(R } 1}(1-;*){0‘;‘, 3 aM
=ri) R\ 2 J|Rixdp ~ 10ER Roxdd

M!,z bR (,;, P :> A+ (99@#39@)
Y 0ERY Rovig \e,” T 00 = \Ros

1 é | ¢ no Poony s
”ké.i-['“ 20ER’ Ra¢< (R° mrat R w"’)]}' @b

and

Elh f1—=v\{du, v, I A I
Moo =725 ('T ) {R"’b‘kﬁ dx ~ 12ER? R&vé‘cp[ (RE=rd)
Po, s s Dfi-v i 3
te (R ")}}+R( 2 ){R(x ¢[ o~ oM
no(p . P z) (1= v)ir® (6@ o&«)
“‘“mm( T } 100 <vi \Rag T

1 ¢ o3 o Pas s
e meen — e S ps i < o e . 42
*r R ["" 20ER? ox (c, (RZ=r2)+ C;(R "))]} “2)

Arerage displacements W, 4. ¢ and rotations ¢ .. ¢
For identifying the proper boundary conditions of the derived shell theory, average
displacements W, & and #, and average rotations ¢, and ¢, are introduced. The rotations
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¢, and ¢, are for sections x = constant, and ¢ = constant, respectively. The average
transverse displacement w is obtained by equating the work of the transverse shear stress
1,. due to displacement w to the work of the transverse shear resultant Q, due to average

displucement & {see Voyiadjis and Baluch, 1981):

h 2
f T WAz = QuW.

-k 2

The resulting expression for W is given by

- v o(p o P 2)
W= o= g M zom’(ar"'”??“ |

Similarly, in order to obtain &, & &.. and ¢, we use the following equations:
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The resulting exprossions {or 4, £ &, and ¢ are given, respectively, by
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Let the shear ungles 7, and v, be defined such that

Q.
}’,\' - b7~
and
Yo = “Qf'
where

(43)
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(45)

46)

(47)

(48)

(49)

(50)
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(52)

(53)
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We therefore obtain

and

b =

-
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(54

(55)

Equations (49). (30) and (53) indicate that the correction factor of the transverse shear
deformation in the present refined shell theory is 5/6.

The stress resultants and stress couples may be expressed in a more concise manner in
terms of 4. &, w. 7, and 7, as follows:

(75)
dx
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D 1
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The transverse shears @, and @, are given by
Q. =Ty, (70)
and

Q, =Ty, (n

These resulting constitutive equations of shells reduce to those given by Flugge (1960) when
the shear deformation and radial effects are neglected. In this case, the average displacements
are replaced by the middle surface displacements. The transverse shear forees Q, and Q,
are obtained in this case from the equilibrium equations in terms of the stress couples.

An alternate set of expressions for the stress resultants and stress couples may be
obtained in terms of the average displacements 4, &, w and corresponding rotations ¢, and
¢4. These equations are given by the following relations:

M, = D[ao‘ir 'z(é‘&]”‘""“ Py 72)

M, =D[%% +V%é;+,l§(%+\'g§+ Raf¢)]+lup.+/\4pu (73)
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and
) Eh éa  er\(1=v) D(1-v\[¢. ¢, ( du 6v>
Moo = (1-v2)(ka¢ +a_v>( 3 )' R( 3 )[Rc’d; * o TR R T &
(79)
The corresponding transverse shears are expressed by the following equations:
ow
Q.= T( —¢. - —) (80)
ow r
Qs = T(m"¢¢—ﬁ) 81)
where ¢, is defined by subtracting the term 4/R from eqn (49) such that
¢.=¢,—it/R. (49a)

Equilibrium equations and houndary conditions
For the case of small deformation analysis, the shell equilibrium equations are given
below (Flugge, 1960) :

(7N N,

S oy TPe=0 (82)

Ny, 0Ny  Q,

Rop T ax TR0 ®)
Qgi %f/f +Qutm, =0 (85)
%%#’g“ £ Qutmy =0 (86)

N+ Y ;““‘ 0. 87

In the above equilibrium expressions p., p, and p. arc the equivalent distributed loads acting
on the middle surface of the shell. For example, the load p. is given by

i h
p:=p.(l—2~'§) ('*m) (88)

m, and m, are the equivalent distributed moments acting on the middle surface due to the
distributed loads p,,. p... Psi and py, acting on the surfaces of the shell. The sixth equation
given above by expression (87) is identically satisfied consequently reducing the number of
equilibrium equations to five. The stress resultants and couples may be expressed in terms
of either 4, &, W, y,, and y, or &, #, W, ¢, and ¢,. We therefore have five unknowns to solve
for, from the five remaining equilibrium equations (82)—(86).
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The static and kinematic boundary conditions for this refined shell theory may be
expressed in terms of either the quantities (&, &, W, 7. 7,) or (& T, Ww. ¢, ¢,) together with
the use of constitutive equations (57)—(71) or (72)-(81). There will be three boundary
conditions for bending problems for each edge. The usual expressions for simple, fixed and
free edges will be used to express these boundary expressions (see Niordson, 1985).

THE NONLINEAR NATURE OF THE STRESS DISTRIBUTION

The resulting nonlinear distribution through the thickness for the in-plane stresses in
the proposed thick shell theory is due to the incorporation of the initial curvature of the
shell, and the three-dimensional constitutive equations as obtained from relations (18)-
(20). This effect becomes highly pronounced in thick shells by changing the magnitude of
the maximum stress significantly as compared to the linear stress variation theory.

In the expressions of the in-plane stress components g, 0, and 7., as given by eqns (24)-
(26). respectively, nonlinear terms such as 1/(R +z) and z°/ Rare involved. Consequently, the
stresses given by the present theory have a nonlinear distribution along the thickness of the
shell. Let us consider the simple case of a constant normal pressure and investigate the
corresponding stress distribution of g, through the thickness. In this case we have

- E ( Cty N W N (’11.,) ATy <| ot >+ RN
= et v )= s = e |2
* 1V \Ree TR+ TV Ay R 04: R)TV ax?
v M K oM 1 ]éQ oQ
el e R L . A AR
+ Eh [R' (’(b'( 4R>+‘ ox” } * ZGII[RF'([J + Ox jl
4z 3z =z 3 =?
R
h- R\2 i~ R+:E]c¢, R- R
+ p..< r < :1>> 6:° v } v | p (l rs
R - - .
TR R T e (R+3)*
Pu ri
L NI 89
+c:< (R+:)-)] )

In e¢qn (89) all the terms are nonlinear in = except for the terms associated with dey/R 0¢,
duy/Ox and @*wy/ox’.

A number of problems will be investigated in order to asscss the -accuracy of the
distribution of 6, through the thickness. The stress distribution obtained using the presented
theory will be compared with various theorics.

Circular arch subjected to pure bending
Let us consider the problem of a circulur arch of rectanguliar cross-scction with unit
width subjected to pure bending. In this case we have

oM M
p=p=0Q., =0, = 5"; = k‘é’(/r)t =yu=10 (90)

Ao

and therefore eqn (89) reduces to the following expression

vy Wy 6v: ozt ¢y wﬂ) =*
= gt R ey —_ T RS - - .
%o E[Réd) * R T RERMe <' Rt R-) <R-(,’(/r e &) O

By considering M,/E « w,, the above equation may be approximated to the following:

- 800 ‘_t—'o 1",:, -( :> 9
”"‘E[Ra¢+ R“]‘(h»‘/lz)' '~ %) G2)
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From the elasticity solution we obtain the circumferential stress at the middle surface of
the arch to be E(Cry/R 8+ wo/R) and is independent of the angle ¢. The proposed shell
theory indicates also that the middle surface is not a zero stress surface (neutral surface).
Equation (92) may be rewritten as

oM M,
"""“(h}/izf‘“(""""“*(mxlz) ) ©3)

The two terms inside the parentheses in the above equation indicate the modifications made
to the stress distribution of the elementary theory through the use of the proposed shell
theory. We now express the maximum and minimum values of a, as follows:

0, = a Af (94)

where the values of 2 as a function of r,/r, for different formulations (see Ugural and
Fenster, 1975) are listed in Table 1. In this table, the maximum and minimum values of o,
are listed for three different values of the aspect ratio r.fr;, namely 1.5, 2.0 and 3.0. The
corresponding aspect ratios for R/hare 2.5, 1.5 and 1, respectively. These ratios correspond
to extremely thick cylinders. It is clear from Table 1 that the proposed theory gives good
results even for the case of a circular arch with R/h = 1.

Thick cvlinder subjected to uniform pressures
We now investigate the stress distribution of g4 for a thick cylinder subjected to uniform
pressure p, and p,. In this case we have

U= Q,b = -*(1:‘6" =0 (95)
and
wo= (). (96)

The stress o, using the proposed theory is expressed in this case as follows:

SE ool
= R4z {"“* Ee, [" R ("' R)] ke, [“'" R: ( Rﬂ} on

The corresponding exact clasticity solution for this problem is given by

o n ri e
o =1+ —— "+ t+-——-—-——]—~. (98)
’ [ (R+:)‘]c| (R+2)*] ¢,
Table |
Proposed shell Elasticity
Winkler's theory theory solution
Elementary
rifry theory r=r, r=r, r=r; ra=r, r=r, r=r,
.5 +24 ~26971  20.607 -27.971 20.029 ~27.858 21.275
2 +6 ~7725 4863 —7.642 4358 -1.755 4917
3

+1.5 -2285 1.095 —=2.105 0.895 -2292  L.130
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From the elasticity theory. we have
R
Wy = EU¢I:=0 (99

where

S

Substituting for w, from eqns (99) and (100) into expression (97). we obtain the following
expression for g,,:

0 | O Y PR 1 1) AN Ao,_> Po}
”“’“R+:{['+ Rt R(' R(R+:)>]c.+[l+ R+ R(l R(R+7) J

(1on

It can be easily shown that o, as obtained from eqn (101) of the proposed shell theory is
identical to that of the exact elasticity solution expressed by eqn (98).

Gupta and Khatua (1978) in their derivation of a thick shell superparametric finite
element proposed a modification in the cxpression for the circumferential stress a,. Their
modificd expression is given by

R
T, (102)

a, = Ri-

where a4 is the average hoop stress. We note that Gupta and Khatua's scheme cannot
distinguish the difference between the internal and external pressures. We also note that
Winkler's theory (sce Ugural and Fenster, 1975) is not valid for this case of loading.

EQUIVALENT FORMULATION FOR THICK PLATE THEORY

It is relatively simple to reduce the proposed shell theory to a thick plate theory. The
coefficients k, k», ..., etc. reduce to the following :

kimky=ky=ky= — 6"%'5)-") (103)
for
l=—l-<|-5~+:—:,—5;+...) (104)
r"RUTRTRTR
and
ky =k, = iﬁv‘l_l"ﬁ (105)

as R approaches infinity. In this case the stress resultants, and stress couples expressions
reduce to:

Eh (i ov
N, = l—;;((} +v7-)+/~5(p.+pn (106)
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En [éF &
N, = 1= (g +v ‘.Tx)+l\5(l7.+pu) (107)
N.=N. =Gh (f—“ + 5) (108)
: cy  Cx
oW
Q.= T<§ —¢‘) (109)
0. = T(?ﬁ —¢,.) (110)
cy
P, Coh\
M_,-D(a‘_ +v—6}—_)+k,(p.+p(,) (11
Q
M, = D(—(?—+ —dL)+/\ (p.+p) (112)
—_ ] ol
M,=M, =D '«5 ' (‘ Py ‘f/"). (113)
& ( \r [BAY

APPLICATION OF THE PROPOSED SHELL THEORY TO CIRCULAR ARCHES

Weak form of equilibrium equations
In the case of arches, we note that

i=¢. =0 (114)

and the non-zero stress resultants and stress couples reduce to the following expressions

% W\ Dfw @ o
N¢=s(~~”«+“)+ »(‘»‘;+ o 1 )+/\s{’+/\¢.[’u (115)

Rd¢p R R\R- R R R ’(b
Dﬁ Iy
Q,=T R %—R (116)
and
i, 1 éF W
A’I,b = D(‘—"',JE“" R R’(f) R )+I\\/’|+/\-«lpn (ll7)

where S = EA, and A4, is the cross-sectional area of the arch. The corresponding equations
of equilibrium are given as follows :

N, Qw

=0 118
Ra¢+ +py (118)
0, N, _
755" R +p. =0 (119)
oM
Ra; +Qy+my =0. (120)

Let ¢, o, and 3¢, be the test functions corresponding to ¢, W, and ¢, respectively.
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The weak torm of the equilibrium egns (118)-(120) may now be expressed as

WY Q. B R
J (Rm p +p,><)led)—0 (121)
i (“‘Q, A\', .- ,

Y= 7 S How = 122
'_(R(’(I) R +p_>(uRd<p 0 (122)
M, N
\&: ¢+Q‘D+ml, dp Rdd = 0. (123)

Substituting eqns (115)-(117) into the above integral equations and integrating by parts
yields

Cor 7 CoF T Ow D &oF ((,/),, )
l — - OF + + - ) ’
RJL (4“/)“1) u)t) (4\\ ”/’ o (l) < ”/) o d),(l d</>

=j (31’]7‘.Rd:/)+(N,péf)1:ﬁf,. (124
I8

R S o T cow ) T cow ow (o _A> D . chy, T Cow / l
2 o O TR C * R* O O FoAwow I+ R R ? do
= J R(p.~k s ’kr,/".)‘$“-' dop+ (Q,},()-lf') I:/,(', . (125)
!

and

D oo, OF '[ D dod, . oW D o, (o,
R Yep, FF P — ) \
J;, [(R O (/J R Pul ) * (I\" ) YR Z Cip * R~ O O

+ T, d)(,,)Jd(/) = (AI‘,,<)'(/)(,,){,’{,'{I+RJ‘ <m‘,,+/\" R[’I,b +/\4 R )Ll({) (126)
1.

where

oS P
TR RY

(127)
The left-hand side of eqns (124) -(126) result in the element stiffness matrix and the cor-
responding right-hand side of these equations give the external nodal load vector.

Finite element scheme

Since the emphasis here is to verify the accuracy of the proposed theory rather than
to give an efficient finite element scheme, a simple finite clement model is employed in this
work.

The nodal variables for the circular arch are £, W and ¢,. For the weak form of the
cquilibrium cquations a linear trial function for 7, i and ¢, will be acceptable. Nevertheless,
this gives poor performance and higher order trial functions nced to be used. This is
accomplished by employing interior degrees of freedom (bubble functions). The assumed
trial functions are given by the following relations (Hu, 1981):

C(q) = oaf, + 5, (128)
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w(n) = aw,+mi; +ané, + (2 —an’)¢, (129)
@.(n) = 29, +n¢; +an¢; (130
where
"=$£%% (131)
and
2=1-n. (132)

In the above equations &,. &, and £, are the interior degrees of freedom in an element. Using
the expression &, ¢; and &, for straight beams given by Hu (1981), we express w and ¢,
as follows:

() = Lot dan(a =l e + dana =) = ,

L
+ [ —Aan(x—m)w, + [—an + Lan{a—n)] 5 ¢, (133)

Pp(n) = —6ian ‘Z': + (2= 3ian)p, + 6ian ‘Z + (= 3ian)d, (134)
where
L=R(b.—bo) (135)
and
. (136)

D
1412
(1+12,2)

In eqn (137) 4 is the parameter for the shear deformation effect. For a slender beam,
4= 1and dw/L dn — ¢, as (h*/L*) - 0. These trial functions are valid for both thick and
thin arches.

Numerical examples
The feasibility and accuracy of the proposed refined theory of thick shells presented
in this paper are demonstrated by the following numerical examples on circular beams.
Exumple 1 —Cantilevered straight beam. For the case when the radius R approaches
infinity, we obtain a straight bcam. In this example, the deflection of the free end of a
cantilevered beam subjected to a concentrated load acting at the free end is investigated.
This deflection is expressed as shown below

3
|t'(,=6=a%. (137)

Different values of « are tabulated in Table 2 corresponding to different aspect ratios of
(L/h). Full agreement is obtained between the presented theory and the exact elasticity
solution for both thick and thin beams.

Example 2—Thick circular cylinder. In the discussion of the stress distribution, it is
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Table 2. Deflection coetficient 2

Lk
Type of
solutions 5 10 100
2 Elements 0.3437 0.3359 0.3334
Exact 0.3437 0.3359 0.3333

Table 3. Transverse displacement w, (in.)

R/
Type of solutions 3 5 10 100
Finite element solution 0.3220x 10-*  0.8745x10~* 0.3422x10"' 0.3343x 10/
Exact solution 0.3272x 10-* 08840 10°*  0.3442x 10"  0.3345x 10!

pointed out that the present theory gives the exact nonlinear stress distribution for a
thick cylinder subjected to internal and/or external pressures provided the middle surface
displacement w, can be accurately calculated. Based on the shell equations given in this
paper, the transverse displacement of the middle surface wy, using the finite element solution
for various R/h ratios is listed in Table 3. The following data are utilized in order to obtain
the solution :

Modulusof clasticity: £ =3 x 107 psi

Poisson’s ratio v=10.3
Thickness: h=10in.
Internal pressure p, = Opsi
External pressure: Po = —10psi

(1 pst = 0.006895 MPu).

The finite element solution is in good agreement with the exact solution even for the case
of extremely thick cylinders.

Example 3—Cantilevered circular arch. The case of a cantilevered circular arch sub-
jected to an inward radial concentrated load at the free end is discussed here. The arch
subtends an angle of 7/4 radians. In Table 4, the results are listed for the deflection coefficient
o as obtained by both the presented finite element formulation of the proposed thick shell
theory and the exact solution. The coeflicient « is obtained from the following equation:

PR’
R

- (138)

Wy =(5 =

Good correspondence is obtained between the two formulations when eight elements arc
considered in the finite element mesh.

Tablc 4. Deflection coefficient x
(for R/h = 5)

Number of elements

4 8 Exact

x 0.1181 0.1440 0.1447
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CONCLUSIONS

A two-dimensional theory for thick cylindrical shells is developed in this paper. By
considering the shear strains, the transverse shear deformations are accounted for in the
resulting shell equations. In the proposed theory. the initial curvature effect is incorporated
in the stress distribution leading to an accurate nonlinear distribution of the in-plane
stresses. Through the incorporation of the radial stresses to the proposed shell formulation,
we obtain the resulting stress resultants and stress couples to be associated not only with
the middle surface displacements of the shells. but also with the radial stresses explicitly.
By using the constitutive equations of the three-dimensional theory of elasticity and incor-
porating the initial curvature effect on the stress resultants and couples. an accurate set of
constitutive equations for two-dimensional shell theory is obtained.

The constitutive equations obtained here reduce to those given by Flugge (1960)
when the shear deformations and the radial stress effects are neglected, while the average
displacement is replaced by the middle surface displacements of the shell. The resulting
proposed equations in this paper are slightly different when compared with the equations
given by Sanders (1959). Koiter {1960) and Niordson {1978), primarily because they use
the so-called effective stress resultant and stress couple tensors. These effective stresses are
used in the variational derivation of the constitutive equations (see Niordson, 1985).
However, even when both the shear deformation and radial stress effects are neglected, the
stress distributions given in the present paper will still be nonlincar because the stresses are
derived from the three-dimensional constitutive equations given by expressions (18)—(20).

The nonlincar distribution of in-plane stresses through the thickness of thick shells was
ignored in the past and not accounted for in the shell theory formulation. This is not the
case in the proposed formulation. This nonlinear distribution constitutes a very important
ingredient for an accurate and reliable thick shell theory.

Similar to the shell theory of Sunders -Koiter, the presented shell equations are con-
venient for use in the finite element analysis. This is demonstrated here by the application
of these equations to the circular arch analysis and by the authors in their forthcoming
paper (Shi and Voyiadjis, 1990). The proposed theory is not only very uscful in the analysis
of thick shetls, but also has the potential for use in the analysis of composite shells (see
Noor and Burton, 1989). This theory is also important in applications of vibrations of
shells where the shear deformation and stress distributions along the thickness direction
play an important role.

Although only thick isotropic cylindrical shells are studied in this work, the meth-
odology employed here may be extended to the study of general shells.
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