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Abstr.ct-A higher order two-dimensional theory for thick .:ylindrical shdls is pn:sented in this
paper. The shell equations given here do not only in.:orporate the effect of transverse shear defor
mations but also account for the initial curvature as well as the radial stress. The proposed
theory presents a very good approximation for the shell constituti\'e equations and the nonlinear
distributions of the in-plane stresses across the thickness of the shell. The latter is very important
in the thick shells analysis. The formulation is based on: (I) :lssumed ouH'f-l"hlOe stress components
which satisfy the given traction boundary conditions; (1) thr<'C-dimensional elasticity equations .
with an integral form of the equilibrium equations; and (3) stress resultants and stress couples
acting on the middle surface of the shell. average displacements along the normal at a point on the
middle surface. and average rotations of the normal.

The proposed shell equations can be conveniently used in the tinite element analysis, An
application of this theory to the finite element ilOalysis of circular arches is given in this paper. A
more convenient form of the proposed shell equations for tinite element analysis and its application
to cylindrical shells will be presented in a follow-up paper.

INTRODUCTION

Although the complete two-dimensional linear theory of thin shells was developed by love
100 years ago, numerous contributions since then have been made to this subject. This is
primarily because any two-dimensional theory of shells is an approximation to the real
problem, Researchers have been seeking beller approximations for the exact three-dimen
sional elasticity solutions of shells. In the last thn:e decades. the developed refined two
dimensional linear theories of thin shells include the important contributions of Sanders
(1959). Koiter (1960), Flugge (1960) and Niordson (PHS). In these relined theories. the
initial curvature effect is taken into consideration in the formulation of the shell equations.
Nevertheless. the deformation is based on the love--Kirchhotr assumption. and the radial
stress effect is neglected, These refined theories provide V\;:ry good results for the analysis
of thin shells. The theory of Sanders-Koiter has been widely used in the tinite clement
analysis of shells (Ashwell and Gallagher, 1976).

However, it is shown (see Niordson, 1971) that love's strain energy expression has
inherent errors of relative order [hiR + (hiL) 2] where h is the thickness of the shell, R is the
magnitude of the smallest principal radius of curvature. and L is a characteristic wave
length of the deformation pattern of the middle surface. Consequently. when the refined
theories of thin shells are applied to thick shells. that is h R is not small compared to unity,
the error could be quite large as expected. Relative to the theory of thin shells, the theory
of thick shells has received limited attention by the researchers up to now. With the increase
of the utilization of thick shells to various engineering applications such as cooling towers,
arch dams, pressure vessels. etc. it is imperative to develop a simple and accurate theory
for thick shells.

Thick shells have a number of distinctly different features from thin shells. One of
these features is that in thick shells the transverse shear deformation may no longer be
neglected. In a number of particular cases of loadings the radial stress distribution of thick
shells is very important and needs to be incorporated in the shell analysis. A third important
distinction between thick and thin shell analyses is that in thick shell analysis the initial
curvatures do not only contribute to the stress resultants and stress couples. but also result
in nonlinear distributions of the in-plane stresses along the thickness of the shell.

It is not difficult to incorporate transverse shear deformations in shells. This can be
accomplished following the work of Reissner (1945) for the plate theory. Nevertheless. it
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is not an easy task to incorporat~radial stresses in thin shell theory and to obtain nonlinear
stress distributions through the shell thickness in order to describe the behavior of thick
shells. The attention in the previously developed shell theories was focused on the two
dimensional shell equations together with maintaining a linear stress distribution through
the shell thickness (see Flugge. 1960; Niordson. 1985). It appears that refinement of the
stress distribution in the thick shells has hardly been ignored. The theory of thin shells may
provide a good estimate of the strain energy for some problems in thick shells. N~vertheless.

it cannot provide an accurate distribution for the stresses through the thickness (Gupta
and Khatua. 1978). This accuracy is imperative from an engineering point of view.

Th~ formulation procedure for the proposed shell theory is based on the following:

(I) assum~d out-of-plane stress components that satisfy the given traction boundary
conditions;

(2) three-dimensional elasticity equations with an integral form of the equilibrium
equations:

(3) stress resultants and stress couples acting on the middle surface of the shell together
with average displacements along a normal of the middle surface of the shell and the average
rotations of the normal (Voyiadjis and Baluch. 1981).

Although the proposed shell theory in this work is limited to thick cylindrical shells. the
methodology can be extended to general shells by considering the general geometry of the
shell.

It is well established that curved beams exhibit a nonlinear circumferential stress
distribution through the thickness. In the proposed theory of shells. all the in-plane stresses
exhibit a nonliner distribution through the thickness. This is primarily due to the incor
poration of the initial curvature etlcct in the theoretical formulation of the proposed shell
theory. The nonlinear stress expressions given here arc compared for specific examples to
those ootained through the three-dimensional theory of elasticity.

Due to the incorporation of the initial curvature of the shell in the proposed theory.
we note that neither the stress resultant tensor nor the stress couple tensor is symmetric.
The resulting constitutive equations of shells reduce to those given oy Flugge (1960) when
the shear deformation and radial effects arc neglected. In this case the average displacements
arc replaced by the middle surface displacements. However. the resulting equations arc
slightly different from those given oy Sanders (1959). Koiter (1960) ,lOd Niordson (1978).
This is primarily oecause the so-called effective stress tensor and etfective moment tensor
are used in the derivation of the constitutive equations instead of the usual stress tensors
(Niordson. 1971).

The proposed shell equations can be conveniently used in the finite element analysis.
An application of this theory to the tinite element analysis of circular arches is given in this
paper. Numerical results arc obtained and compared with the elasticity solution.

THEORETICAL FORMULATION OF TilE REFINED THEORY OF THICK CYLINDRICAL SIIELLS

DisplaC/.'ment field
The proposed theory for thick circular cylindrical shells incorporates the etfects of the

initial curvature and radial stress in addition to the effect of transverse shear deformations.
The following kinematic Held for II. L' and II' displacements along the x. <p and =direction
is dctined [sec cqns (7) -( 17)]. respectively. for isotropic linear clastic m'lterials:

( I )



Two-dimensional theory for cylindrical shells

r(x,~,;) = (1 + i) {t·o(X, ~)+ 2~h=[(3- ~11)_ ~G-~~)]

- ~ cc~o (;- ~)+ ;;J ~ (~;;3 (1- ~~)

- E~', ~ ~~ {;2
1- ~~1 (;2

1-;:)- ~[;; - ~~1(;; -::)]}
_ E~1 ~ ~; {~1 _~i1 (;2

1_;:)- ~ [;;' - ~i1 (=3
3-{:)J}

+ ~;il [;- ~~1 (;- ~)- 2~ (;1_ ~~1 (;1_ ~ ~))J
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(2)

I {PI [ '1 ( ;1)J Pu [ '1 (;1)J 6;1}lI'(x.cP,;) = 11'0(.\".4»+ E ~ ;- R1 ;- R + ('2 ;- R1 ;- R - vM h2 '

(3)

where

and

( )'" -
('I = ,~ -I

(4)

(5)

(6)

In eqns (1)-(3), tl lI (.\:, cP), vo(x, 4» and II'II(X, 4» are the displacements in thc x, (p and
; directions. respectively, of the mid-surface; = O. The loads P.I; and Pm are distributed
along the x direction on the inner and outer surfaces, respectively, and similarly for the
loads P<!>, and P",u along the 4> direction. In the above expressions. E and v are the Young's
modulus and Poisson's ratio, respectively, " is the thickness of the shell, and P,(x, 4» and
Pu(x, ~) are the radial loads exerted on the shell surfaces == - "/2 and z = 11/2, respectively.
The positive sign convention for these loads is shown in Fig. I. Q. and Q", are the transverse
shears, and M. and M.; are the moment stress resultants on the planes of x = constant and
4) = constant, respectively.

The addition of the transverse normal strain effect has resulted in a transverse dis
placement II' whose distribution through the thickness is explicitly obtained on physical
grounds as a nonlinear function in ;. The detailed derivation of the displacement field is
outlined below.

The following out-of-plane stress components are assumed:

(7)

(8)
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o
Fig. I. Cylindrical shell clement.

(9)

Expression (7) depicts the radial stress distribution .IS obtained from the elasticity solution
for thick cylinders subjectt...d to constant radiallmtds at both surfaces: = 11/2 and: = - 11/2.
The normal stress (J: is ignored in the case of analysis of thin shells. Equation (9) expresses
the transverse shear stress as obtained from rectangular cross-sections. In the case of eqn
(8), the transverse shear on the surface x = constant is modified through the term (I -:/R)
due to the fact that the cross-section is not rectangular in this c.tse but exhibits a curvature.
Equations (7)-(9) satisfy the following boundary conditions

fT: = 1'" at.:: = 11/2 (lOa)

(J: = -Pi at: = -h/2 (lOb)

!:<ll = 1'"", at: = h/2 ( IOc)

!:,p = -P,/>, at: = -h/2 (lOd)

!.: = flu, at:=h(l (JOe)

f,.: = -p..i atz = -h/2. (10f)

The assumed stress field satisfies the weak form of the equilibrium equation given by
the following integral expression

(II)

Using Hooke's law for a linear elastic material, we obtain the transverse normal strain
&: in terms of the stresses:

(12)

The sum (fT. + (J</» is assumed to be given by the following expression:

(13)
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(14)

(15)

Reissner (1975) considered a plate with no load and made use of expression (13) to modify
the expression for the transverse displacement w. Substituting expressions (7) and (13) into
eqn (1 ::!). we obtain

ow 1[1-(r2/r)2. 1-(r,/r)2 12\1 J
:l_ = -E PI + Po- -hJ (M,+At.;): .
L_ C, C2

Integrating eqn (14) with respect to =yields the following expression for the displace
ment II':

or

+ ~: [=_ ~~(=_ ~ + ~2! _ ~: + ...)J-v ~J2 M}.
In the classical theory of bending of thin shells. the term =/ R and all its higher order terms
are neglected. In the present formulation. the term =/ R is retained but all its higher order
terms (=/R) 2. (=/R) J, etc. are neglected. The resulting expression for w(x. cP. =) is now given
by eqn (3).

In order to obtain consistent assumptions for the displacements II(X. cPo :) and
I'(x. (P. =). the following strain-displacement relations arc used:

iJII thv t"+ .... = y,- = .
iJ= (IX • G

(16)

( 17)

Substituting for the appropri"lte shearing stress from expressions (8) and (9) into eqns (16)
and (17) and integrating both expressions with respect to :. we obtain the originally
postulated expressions (I) and (2) for the u and t' displacements. respectively.

In the shell theory that follows the distributed loads P,i. P.o. P';i and p.;o are omitted
for simplicity and conciseness. The reader may choose to include them by following the
procedure outlined below.

Stress compulleflts u•• u.p. t,.p

In order to obtain the u" u.p. t,.p stresses. use is made of the following three stress
strain relations

E \'
U., = -Iz[r.,+VE.p]+ -I-u:

-\I -v

E \'
U.; = -Iz[r..p+VI:,]+ 'I'-u:-v -v

t,,~ = Gy,.;

together with the following strain-displacement relations

eu
f.., =~ex

(18)

( 19)

(20)

(21 )

(22)
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cu Cr I cu h
/x<l> = -.- + ~ = --/- -- +---.

rccjJ cx I +:iR RccjJ ex
(23)

Substituting for the displacements u and t' from eqns (I) and (2), respectively, into
expressions (21), (22) and (23) and substituting the resulting strain expressions into eqns
(18), (19) and (20), we obtain the following expressions for the stresses:

{
('1'0 CCII'O ( :C) 21' (,cM 1 ( 3:)

+ \' R('cjJ - R-c t!cjJc : - R + El,"} RC ccjJc:' 1- 4R

+ ~~¢:[(3- ~;ZC)_ G- j;~)]- EL R(;/~Z [=2~ -~c(=2c - ;~)

- ~ (~1' - 2~ (~; -I~))]- E~; l~~~i [=2
Z

- ;}r (iZ

- ;~)

- ~(~lJ - ~T! (~' - I~))J+ R~:[Il'''+ £~;(=- ;j~(=- ~))

+:~:!(:- ~;c(:-~;))-V~~,!lJ}]+ I~~,{;:[I- ~~~(I-~)J

+~:~[I- ~Tc(l- ~i)J} (24)

- ~ (~: - ;l- (~; -::))]+ R ~={II'O + ~"I [= - ~ii (= - ~)]

+ 2~/1 ~~~:'=[ 3- ~~~~ - ~G- h-~)]- E~ I ~~~ [=; kCc (=; - ;~)]

- E~;~ ~;~~{~~ - ~T! (=; - ;:)J)]+ I~I' {~~[I- ~ic (I - ~)J

(25)
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and

r,~ = 2( ~\') {(l+ ~)(~.~ +1+1='R[~I;f~ -2 R(::.:\~~¢=(l+ 2=R)J
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Stress couples and stress resultaflts Ofl the middle surface
M;lking use or the definitions ror the stress couples:

(26)

(27)

(28)

(29)

(30)

we now substitute the expressions for the stresses from cqns (24). (25) anu (26) into the
respective relations ror the stress couples to obtain:

P.. [r~ 1 , ,]} Dh
1

2
1 {PI [d I , ,]+ _., +. (R- -r) +\'.- ----. -- .. + (R- -r;)

("1 20 24 I ER 1 R1 {J¢1 Ct 20 24 -

P.. [d I R' ,]} D {., [PI , , p" , ,]+ ..---- + (--rj) -v··· (_+v)·- (R--r~)+ (R--rj)
("1 20 24 ER I

("I C:1

(31 )
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D [PI ' , p" " (PI , p" ')J-\' ---, ---(R~-r~)+ -(R--r])+2(1+\') -r~+ -rj
ER ('I C, ('I ('2

(32)

rn eqns (31) and (33), the following terms at the end of those expressions

'illd

(33)

(34)

respectively, may be ignored. These terms arc of negligible magnitude when compared to
the remaining terms of these expressions. This can also be shown in the case of the average
transverse displacement Ii' discussed later whereby these terms are of negligible magnitude
when eompan:d to the remaining terms in that expression. In the remaining formulation
similar terms will be ignored for the same reasons.

Substituting for the stresses IT" a,~ and !"" from eqns (24)-(26), respectively, into the
following definitions for the stress resultants

f"2 ( ~)
N, = h'~ a \ I + ~ d=

I
ii 2

N",= . a",d=,., ~

(35)

(36)

(37)

(38)
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we obtain the following expressions for the stress resultants:

{
'h' ( )Eh cuo "'0 Ct'o 3v-M v· Pi' PO'

N, = 1_ "~ ex + "jf +v R C4> - 10REh + 20ER4 ;;; rj + ('2 ri

\' I: [Pi , , Po , 'J+----, -(R--r-z)+-(R--rj).
I-v R- Cl C2

p" , • ] I[ 3v 1:
2 (Pi' P... •)]}+ --(R--rj) + - 11'0- --M+ ---i-r:i+ -rj

('2 R JOEl: 20ER ('\ ('2

+ ~ {(-t.'- ., +-~.) [lI'n- -~~ M +~~ (I'.-.i d+Po d)]
R R- (14r R- 10EI: 20ER Cl ('2

and

I C [ 1:
2

D (Pi , , Po , • )]}+ ------- Iin- -------j -- --(R"-ri)+ -(R--rj) .
R R cq, 20ER- ex ('\ ('2
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(39)

(40)

(41)

(42)

At'erage displacemellfs I\'. Ii. i; and rowtio"s q". tP",
For identifying the proper boundary conditions of the derived shell theory, average

displacements li-, Ii and f. and average rotations cP. and cPo/> are introduced, The rotations
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tP, and tP" are for sections .t "" constant. and rP = constant. respectively. The average
transverse displacement 1\' is obtained by equating the work of the transverse shear stress
!tP~ due to displacement w to the work of the transverse shear resultant Q", due to average
displul.'ement .,. (see Voyiadjis and Baluch. 1981):

(43)

The resulting expression for We is given by

(44)

Similarly. in order to obtain li. ~. tbT' and q,¢ we use the following equations:

(45)

nnd

(46)

The resulting cxpres."ions for u, f. 4JT and 4J", ~trc given. respectivcfy. by

<lntl

ihi' 6 Q", I'
<btl> =- - - -_. - --

RiJcjJ .5 GIr R'

Let the shear angit..'S Ix and "I,; be defined such that

and

where

(47)

(48)

(49)

(50)

(51 )

(52)

(53)



We therefore obtain

and
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(54)

(55)

Equations (49), (50) and (53) indicate that the correction factor of the transverse shear
deformation in the present refined shell theory is 5/6.

The stress resultants and stress couples may be expressed in a more concise manner in
tcrms of Ii, i', Ii', 1', and '/"_ as follows:

(57)

(58)

(59)

(60)

(61 )

and

whcrc

D I " ,
k , = -v

ER
} ~[(2+v)(R--n)+2(I+v)r~I (64)
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k
D I " ,

4 = -V ER 3 c~[R--ri+2(1+v)ril

(65)

(66)

(67)

(68)

(69)

The transverse shears Q, and Q,p are given by

Q, = T,',

and

Q,,,= Ty,,,.

(70)

(71)

These resulting constitutive eqU4ltions of shells reduce to those given by Flugge (1960) when
the shear deformation and mdial ellccts arc neglected. In this case, the average displacements
arc replaced by the middle surface displacements. The transverse shear forces Q, and Q,p
arc obtaint:d in this case from the equilibrium cquations in terms of the stress couples.

An altcrnate set of expressions for the stress resultants and stress couples may be
obtained in terms of the average displacements ii, l;, Ii' and corresponding rotations C/>, and
c/>,p. These equations arc given by the following relations:

[
U(P: Dc/>.p ]M = D -- +\,----- +k,P +k'I'., ux RiJ4> ,- u

M = D (~ - I') [!-4>~._ + ~~4>.!. + ~-~!l-J,p, 2 Ruc/> iJx R RiJc/>

=(~)(~ CU) (~) _ Q(~) [ oc/>: oc/>,p ~ ( aii _ au)]
N.T. l-v2 Roc/> + ox 2 R 4 Rac/> + ox + R Roc/> ex

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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and
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The corresponding transverse shears are expressed by the following equations:

where 4J: is defined by subtracting the term iiiR from eqn (49) such that

4J', = 4J, - iii R.

(80)

(81)

(49a)

ECfllilihrilim eqllations and hOlmdary conditions
For the case of small deformation analysis, the shell equilibrium equations are given

below (Flugge, 1960):

DQ, DQ", N",---- + --- - - -- +p. = 0
iJx RD4J R -

iJM, DM",_,
2.-;- + RD4J +Q,+m, = 0

iJM.p iJM,,,,-- + ---- + Q +m = 0
R iJ4J iJx '" '"

M""N,,,,-N,,,,+ If" = O.

(82)

(83)

(84)

(85)

(86)

(87)

In the above equilibrium expressions p,. p", and P: are the equivalent distributed loads acting
on the middle surface of the shell. For example. the load P: is given by

P: = P, (1- :~)+Po (I +;~). (88)

tn, and m", are the equivalent distributed moments acting on the middle surface due to the
distributed loads p". P,o' P"'i and P"'o acting on the surfaces of the shell. The sixth equation
given above by expression (87) is identically satisfied consequently reducing the number of
equilibrium equations to five. The stress resultants and couples may be expressed in terms
of either ii, t;, .i', Y" and y", or ii, D, .i', 4J." and 4J;. We therefore have five unknowns to solve
for. from the five remaining equilibrium equations (82)-(86).
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The static and kinematic boundary conditions for this refined shell theory may be
expressed in terms of either the quantities (ii, i', »"', i'" i'<» or (u, f, 1\', ¢" ¢<» together with
the use of constitutive equations (57)-(71) or (72)-(81). There will be three boundary
conditions for bending problems for each edge. The usual expressions for simple, fixed and
free edges will be used to express these boundary expressions (see Niordson, 1985).

THE NONLINEAR NATURE OF THE STRESS DISTRIBUTION

The resulting nonlinear distribution through the thickness for the in-plane stresses in
the proposed thick shell theory is due to the incorporation of the initial curvature of the
shell. and the three-dimensional constitutive equations as obtained from relations (18)
(20). This effect becomes highly pronounced in thick shells by changing the magnitude of
the maximum stress significantly as compared to the linear stress variation theory.

In the expressions of the in-plane stress components (1" (1", and r ,'" as given by eqns (24)
(26), respectively, nonlinear terms such as I/(R +=) and =:/R are involved. Consequently. the
stresses given by the present theory have a nonlinear distribution along the thickness of the
shell. Let us consider the simple case of a constant normal pressure and investigate the
corresponding stress distribution of (1", through the thickness. In this case we have

[
4-: 1- (I _:)J I I [p ( r: ( _:))

. 3- I;: -'~ 2 - ~: + R+=E c: =- R~ =- ~~

Po ( d ( =:)) 6=:]} v [p, ( r~)+ -- - - - I' A/ + I -
c: - R 1 - R h' ILl' C 1 (1<+=):

Po ( rj)J+ .... 1- -
C2 (R+=)2'

(89)

In egn (89) all the terms arc nonlinear in =except for the terms associated with Dvo/ R o¢,
(Juo/Dx and D211·o/tiX 2.

A number of problems will be investigated in order to assess the accuracy of the
distribution of (1", through the thickness. The stress distribution obtained using the presented
theory will be compared with various theories.

CirClllar arch suhjccted to pure bcnding
Let us consider the problem of a circular arch of rectangular cross-section with unit

width subjected to pure bending. In this case we have

iJ2/1-/ (,2M
P, := Po:= Q, := Q", = -('.·.·,~z = . , = u =0, R i:4>'

and therefore eqn (89) reduces to the following expression:

(90)

By considering M",/£« \1'0. the above equation may be approximated to the following:

[
Ot'o II'OJ AI,/> ( =)

(1,/>=£ Ri3¢+R -(h}/12)= I- R · (92)
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From the elasticity solution we obtain the circumferetuial stress at the middle surface of
the arch to be E{ct"o/R cq,+ wo/R) and is independent of the angle q,. The proposed shell
theory indicates also that the middle surface is not a zero stress surface (neutral surface).
Equation (92) may be rewritten as

(93)

The two terms inside the parentheses in the above equation indicate the modifications made
to the stress distribution of the elementary theory through the use of the proposed shell
theory. We now express the maximum and minimum values of a4J as follows:

(94)

where the values of ~ as a function of '=/'\ for different formulations (see Ugural and
Fenster, 1975) are listed in Table I. In this table, the maximum and minimum values of a~
are listed for three different values of the aspect ratio '=/'\0 namely 1.5, 2.0 and 3.0. The
corresponding aspect ratios for R/h are 2.5, 1.5 and I, respectively. These ratios correspond
to extremely thick cylinders. It is clear from Table I that the proposed theory gives good
results even for the case of a circular arch with R/Iz = I.

Thick qlim/e, suhjeclet! 10 uniform pn'ssures
We now investigate the stress distribution ofa~ for a thick cylinder subjected to uniform

pressure p, and P... In this case we have

and

w = w(;).

The stress a." using the proposed theory is expressed in this case as follows:

(95)

(96)

The corresponding exact c1.tsticity solution for this problem is given by

Table I

Proposed shell Elasticity
Winkler's theory theory solution

Elementary
'zl" theory r ='. ' =': , =', r =': , =,' r -= ,!

1.5 ±24 -26.971 20.607 -27.971 20.029 -27.858 21.275
2 ±6 -7.725 4.863 -7.642 4.358 -7.755 4.917
3 ±1.S -2.285 1.095 -2.105 0.895 -2.292 1.130

(98)
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From the elasticity theory. we have

where

[( d) p, ( d) "oJO",pl:=o = 1+ R= ~ + 1+ R= c= .

(99)

(100)

Substituting for Iro from eqns (99) and (100) into expression (97). we obtain the following
expression for 0"<1>:

R {[ r~ : ( r')J p, [ d : ( 'I)J Po}
0"<1> :: R+: 1+ R-= + Ii. 1- R(R~:) c;-+ 1+ RC + R \- R(R+-;j cc '

(10 I)

It can be easily shown that 0"" as obtained from eqn (\ 0 I) of the proposed shell theory is
identical to that of the exact elasticity solution expressed by eqn (98).

Gupta and Khatua (1978) in their derivation of a thick shell superparametric finite
element proposed a modific.ttion in the expression for the circumferential stress (1"., Their
modilied expression is given by

I<
(1,~ == 1<+:(1n ( 102)

where (10 is the 'Ivemge hoop stress. We note that Gupta and Khatuu's scheme cannot
distinguish the dillcrence between the internal and external pressures. We also note that
Winkler's theory (see Ugural and Fenster. 1975) is not v,lIid for this case of loading.

EQUIVALENT FORMULATION FOR TlIlCK PLATE THEORY

rt is relatively simple to reduce the proposed shell theory to a thick plate theory. The
coefficients k 10 k c' ...• etc. reduce to the following:

for

and

I I ( : :c : 1 )

~ = Ii I - R+ R~ - R1 + ...

viz
k s = k 6 == -_..

2(1-1')

(103)

(104)

(105)

as R approaches infinity. In this case the stress resultants. and stress couples expressions
reduce to:

Eh (eli Oii)
N. == -\-, -;- + v -;;-, +ks(p, +p.,)

- v- uX 0.1'
(\06)
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(
eli (~f)

Nn = Nn = Gh -;;;- + -;;;-- . cy ex

(
hi' )

Qx=T~-4>,
ex

APPLICATION OF TilE PROPOSED SIIFLL TIIEORY TO C1RClILI\R /\RCIIFS

Weak j(m" ofeq/lilihri/lm equations
1n the case of arches, we note that

ii=cp, ==O
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(107)

( 108)

(109)

(110)

(III)

( 112)

(113)

( 114)

and the non-zero stress resultants and stress couples reduce to the following expressions:

and

(
ocp,p I ih' Ii' )

At... == D---- + - ----.- + --- +k'f/ +k 'I'... R D4> R R i3tjJ R1 - I ."

( 115)

(116)

( 117)

( 118)

where S = EA o and Ao is the cross-sectional area of the arch. The corresponding equations
of equilibrium are given as follows:

DN,p Q",
Ri;j> + --R +P,p = 0

( 119)

( 120)

Let Jf. Jli', and J4>,p be the test functions corresponding to i". Ii', and 4J.b' respectively.
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The weak form of the equilibrium eqns ( 118) -( 1~O) may now be expressed as

J
~ (i'.\, Q" ) .
I. R ('(P + R+ {'.~ ()( R dl.? = 0 (121 )

( 122)

(123)

Substituting eqns (115)-( 117) into the abo\'e integral equations and integrating by parts
yields

f [( ('15( h~ T -' -) ( - i'ti( T (~II' . -) (D ('15( (\jJ,p T . -)JR A ,":;' + -., 1'1)1' + All' -,- . -" 1)1' +, -, + - ¢,,()/. dl/>
L ('(/J ClP R- ('(p R- 1'1/> R (\p ('(p R'

= J' ()(p" Rdlp+(N",l5nl:t:,. (124)
I.

and

whae

( 127)

The left-hand side of eqns (124) -( 126) result in the clement stilTness matrix and the cor
responding right-hand side of these equations give the external nodal load vector.

Fillile ('/('1//('111 sch('l1/('

Since the emphasis here is to verify the accuracy of the proposed theory rather than
to give .In eflicient finitc clement scheme. a simple finite clement model is employed in this
work.

The nodal variables for the circul'lr arch arc f, II' and I/>,/>. For the weak form of the
equilibrium equations a linear trial function for f, II' and q,,> will be acceptable. Nevertheless,
this gives poor performance and higher order trial functions need to be used. This is
accomplished by employing interior degrees of freedom (bubble functions), The assumed
trial functions arc given by the following relations (Hu. 19l'i1):

( 128)



where

and
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:x=I-'1.
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(129)

(130)

(131 )

( 132)

In the above equations ~ I_ e1 ande~ are the interior degrees offreedom in an element. Using
the expression eI_ ~: and ~J for straight beams given by Hu (1981), we express Ii' and cPo>
as follows:

11'('1) = [:x + ;.:X'1(:x -'01 w; + [:x'1 + ;.:x'1(:X - '1)l~ cPi

+ ['1- ).OC'1(:x -'01 w, +[- OC'1 + ;.:X'1(:x - '1)1~ cP, (133)

where

and

L = R(4h - cpu) (135)

( 136)

In eqn (137) A. is the parameter for the shear deformation effect. For a slender beam,
;. - I and cw/ L 0'1 - cPo; as (h 2/L 1

) - O. These trial functions are valid for both thick and
thin arches.

Numerical examples
The feasibility and accuracy of the proposed refined theory of thick shells presented

in this paper are demonstrated by the following numerical examples on circular beams.
Example I--Cantilet'erecl straight heam. For the case when the radius R approaches

infinity, we obtain a straight beam. In this example, the del1ection of the free end of a
cantilevered beam subjected to a concentrated load acting at the free end is investigated.
This del1ection is expressed as shown below

( 137)

Different values of:x are tabulated in Table 2 corresponding to different aspect ratios of
(Llh). Full agreement is obtained between the presented theory and the eltact elasticity
solution for both thick and thin beams.

Example 2-Thick circular cylinder. In the discussion of the stress distribution. it is
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Table 2. Ddk"Ction coefficient :l

LII
Type of

solutions

2 Elements
Exact

5

0.3437
0.3437

10

0.3359
0.3359

100

0.3334
0.3333

Type of solutions

Finite element solution
Eltact solution

Table 3. Transverse displacement "'.. (in.)

Rill

3 5 10 100

0.3220 x 10 -. 0.8745 x 10-· 0.3422 x 10-) 0.3343 x 10- I

0.3272 x 10 -. 0.8840 x 10 -. 0.3442 x 10-) 0.3345 X 10- 1

pointed out that the present thcory gives the cxact nonlinear stress distribution for a
thick cylinder subjected to internal <lOd/or external pressurcs provided the middle surface
displacement 11'11 can be accurately calculated. Based on the shell equations given in this
paper, the transverse displacement of the middle surl~tce }I'lI using the finite clement solution
for various Rlh ratios is listed in Table 3. The following data are utilized in order to obtain
the solution:

Modulusofclasticity: E = 3 X 10 7 psi
Poisson's ratio: \. = 0.3
Thickness: h = lOin.
Internal pressure: 1', = 0 psi
External pressure: 1'.. = - 10 psi
(I psi = O.006XlJ5 MPa).

The tinite element solution is in good agreement with the exact solution even for the case
of extremely thick cylinders.

Exa11/l'l/.' 3-Cantilt.'l'l!f/.'d circular arch. The case of a cantilevered circular arch sub
jected to an inward radial concentrated load at the free end is discussed here. The arch
subtends an angle of1t/4 radians. In Table 4, the results are listed for the deflection coefficient
a. as obtained by both the presented finite element formulation of the proposed thick shell
theory and the cxact solution. The coelJkient a. is obtained from the following equation:

PRJ
\Vu = <> = ex .. '-

E/
( 138)

Good correspondence is obtained betwecn the two formulations when eight elements are
considered in the finite clement mesh.

Table 4. Deflection coelTIcient :l

(for Rill = 5)

Number of clements

4

0.1181

8

0.1440

Eltact

0.1447
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CONCLUSIONS

A two-dimensional theory for thick cylindrical shells is developed in this paper. By
considering the shear strains. the transverse shear deformations are accounted for in the
resulting shell equations. In the proposed theory. the initial curvature effect is incorporated
in the stress distribution leading to an accurate nonlinear distribution of the in-plane
stresses. Through the incorporation of the radial stresses to the proposed shell formulation,
we obtain the resulting stress resultants and stress couples to be associated not only with
the middle surface displacements of the shells. but also with the radial stresses explicitly.
By using the constitutive equations of the three-dimensional theory of elasticity and incor
porating the initial curvature effect on the stress resultants and couples. an accurate set of
constitutive equations for two-dimensional shell theory is obtained.

The constitutive equations obtained here reduce to those given by Flugge (1960)
when the shear deformations and the radial stress effects are neglected, while the average
displacement is replaced by the middle surface displacements of the shell. The resulting
proposed equations in this paper are slightly different when compared with the equations
given by Sanders (1959). Koiter (1960) and Niordson (1978). primarily because they use
the so-called effective stress resultant and stress couple tensors. These effective stresses are
used in the variational derivation of the constitutive equations (see Niordson, 1985).
However. even when both the shear deformation and radial stress effects are neglected. the
stress distributions given in the present paper will still be nonlinear because the stresses arc
derived from the three-dimensional constitutive equations given by expressions (18)-(20).

The nonline.tr distrihution of in-plane stresses through the thickness of thick shells was
ignored in the past and not accounted for in the shell theory formulation. This is not the
euse in the proposed formulution. This nonlinear distribution constitutes a very important
ingredient for un accurate and reliahle thick shell theory.

Similar to the shell theory of Sanders Koiter. the presented shell equations arc con
venient for usc in the finite element analysis. This is demonstrated here by the application
of these equations to the eirculur arch unulysis und by the authors in their forthcoming
puper (Shi .lOd Voyiudjis. 1990). The proposed theory is not only very useful in the analysis
of thick shells, hut also hus the potentiul for usc in the analysis of composite shells (sec
Noor and Durton, 1989). This theory is also important in applications of vibrations of
shells where the shear deformation and stress distributions along the thickness direction
play an important role.

Although only thick isotropic cylindricul shells arc studied in this work, the meth
odology employed here may be extended to the study of general shells.
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